Abstract:
We consider the generalized Korteweg–de Vries (KdV) equation and the Korteweg–de Vries–Burgers (KdVB) equation with boundary condition by space variable. For different values of the parameters in a sufficiently small neighborhood of the zero equilibrium state we construct the asymptotic behavior of periodic solutions and invariant tori. Separately we consider the case of the characteristic equation has a countable number of roots in the range of stability of the zero solution. In this situation we build a special nonlinear boundary-value problem, which plays the role of a normal form and determines the dynamics of the original problem.
Keywords:partial derivative differential equation, torus, normal form method, bifurcation.