RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2018 Number 2, Pages 54–68 (Mi ivm9330)

This article is cited in 3 papers

Bifurcations in the generalized Korteweg–de Vries equation

S. A. Kashchenkoab, M. M. Preobrazhenskayabc

a MEPhi National Research Nuclear University, 31 Kashirskoe Highway, Moscow, 115409 Russia
b P.G. Demidov Yaroslavl State University, 14 Sovetskaya str., Yaroslavl, 150003 Russia
c Scientific Center in Chernogolovka of Russian Academy of Sciences, 9 Lesnaya str., Chernogolovka, Moscow region, 142432 Russia

Abstract: We consider the generalized Korteweg–de Vries (KdV) equation and the Korteweg–de Vries–Burgers (KdVB) equation with boundary condition by space variable. For different values of the parameters in a sufficiently small neighborhood of the zero equilibrium state we construct the asymptotic behavior of periodic solutions and invariant tori. Separately we consider the case of the characteristic equation has a countable number of roots in the range of stability of the zero solution. In this situation we build a special nonlinear boundary-value problem, which plays the role of a normal form and determines the dynamics of the original problem.

Keywords: partial derivative differential equation, torus, normal form method, bifurcation.

UDC: 517.988

Received: 26.10.2016


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2018, 62:2, 49–61

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025