RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2018 Number 6, Pages 48–62 (Mi ivm9367)

This article is cited in 2 papers

One initial boundary-value problem for integro-differential equation of the second order with power nonlinearity

Kh. A. Khachatryana, H. S. Petrosyanb

a Institute of Mathematics, National Academy of Sciences of Armenia, 24/5 Marshal Bagramyan Ave., Erevan, 0019 Armenia
b Armenian National Agrarian University, 74 Teryana str., Erevan, 0009, Armenia

Abstract: In the Sobolev space $W_\infty^2(\mathbb{R}^+)$ we investigate one initial boundary-value problem for integro-differential equation of the second order with power nonlinearity on a semi-axis. Assuming that summary-difference even kernel serves for the considered kernel as minorant in the sense of M.A. Krasnosel'skii, we prove the existence of nonnegative (nontrivial) solution in the Sobolev space $W_\infty^2(\mathbb{R}^+)$. We also calculate the limits of constructed solution at the infinity.

Keywords: nonnegative solution, iteration, limit of solution, Sobolev space, monotonicity.

UDC: 517.968

Received: 28.03.2017


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2018, 62:6, 43–55

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025