RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2019 Number 8, Pages 3–12 (Mi ivm9487)

This article is cited in 1 paper

A method of normal forms for nonlinear singularly perturbed systems in case of intersection of eigenvalues of limit operator

V. S. Abramov, A. A. Bobodzhanov, M. A. Bobodzhanova

National research University "MEI", 14 Krasnokazarmennaya str. , Moscow, 111250 Russia

Abstract: The Lomov regularization method is generalized on weakly nonlinear singularly perturbed problems in the case of intersection of the roots of the characteristic equation of the limit operator. To construct asymptotic solutions, we use the idea of initial problems with the use of normal forms, first realized in nonlinear systems by Safonov V.F. and Bobodzhanov A.A.

Keywords: singularly perturbed, normal form, regularization, asymptotic convergence.

UDC: 517.928

Received: 17.06.2018
Revised: 17.06.2018
Accepted: 26.09.2018

DOI: 10.26907/0021-3446-2019-8-3-12


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2019, 63:8, 1–9

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025