RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2019 Number 10, Pages 87–93 (Mi ivm9509)

This article is cited in 6 papers

Brief communications

Projective group properties of $h$-spaces of type $\{221\}$

A. V. Aminova, D. R. Khakimov

Kazan Federal University,18 Kremlyovskaya str., Kazan, 420008 Russia

Abstract: We investigate the curvature of a 5-dimensional $h$-space $H_{221} $ of the type $\{221\}$ [3], necessary and sufficient conditions are obtained in order that $ H_ {221} $ be a space of constant curvature $K$ (theorem 1). A general solution of the Eisenhart equation is found in the $h$-space $H_ {221}$ of non-constant curvature. The necessary and sufficient conditions for the existence of non-homothetical projective motion in the $h$-space $ H_{221} $ of non-constant curvature are established (theorem 5) and, as a consequence, the structure of the non-homothetical projective Lie algebra in such a space is determined (theorem 6).

Keywords: five-dimensional pseudo-Riemannian manifold, the Eisenhart equation, projective Lie algebra, $h$-space of the type $\{221 \}$.

UDC: 514.763: 514.8

Received: 30.04.2019
Revised: 30.04.2019
Accepted: 19.06.2019

DOI: 10.26907/0021-3446-2019-10-87-93


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2019, 63:10, 77–83

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025