RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2020 Number 2, Pages 3–9 (Mi ivm9540)

Integral operators with periodic kernels in spaces of integrable functions

O. G. Avsyankin

Southern Federal University, 8a Mil'chakova str., Rostov-on-Don, 344090 Russia

Abstract: We consider the integral operators with periodic kernels acting from $L_p(\mathbb{R}^n)$ to $L_q(\mathbb{R}^n)$. We obtain sufficient conditions for the boundedness of such operators. Moreover we obtain compactness conditions for the product of the integral operator with periodic kernel and the operator of multiplication by an essentially bounded function.

Keywords: integral operator, periodic kernel, boundedness, multiplication operator, compactness.

UDC: 517.9

Received: 28.02.2019
Revised: 28.02.2019
Accepted: 19.06.2019

DOI: 10.26907/0021-3446-2020-2-3-9


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2020, 64:2, 1–7

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024