RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2020 Number 3, Pages 92–97 (Mi ivm9555)

This article is cited in 2 papers

Brief communications

On changing variables in $L^p$-spaces with distributed-microstructure

N. A. Evseevab, A. V. Menovschikovba

a Novosibirsk State University, 1 Pirogov str., Novosibirsk, 630090 Russia
b Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, 4 Ac. Koptyug Ave., Novosibirsk, 630090 Russia

Abstract: We study the boundedness of the composition operator in the spaces $L^p(V, W^{1,r}(Y_v))$. Such spaces arise when modeling the transport processes in a porous medium. It is assumed that the operator is induced by a mapping preserving the priority of the variables, which agrees with the physical requirements for the model.

Keywords: composition operator, Sobolev spaces, direct integral of Banach spaces.

UDC: 517.548:517.988

Received: 08.10.2019
Revised: 08.10.2019
Accepted: 18.12.2019

DOI: 10.26907/0021-3446-2020-3-92-97


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2020, 64:3, 82–86

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024