RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2020 Number 3, Pages 98–104 (Mi ivm9556)

This article is cited in 7 papers

Brief communications

The Radon transform in the scheme C(N)D-inverstigations and the quasi-Monte Carlo theory

N. Temirgaliyev, Sh. K. Abikenova, Sh. U. Azhgaliev, G. E. Taugynbaeyva

L.N. Gumilyov Eurasian National University, 13 Kazhimukan str., Nur-Sultan, 010008 Republic of Kazakhstan

Abstract: The article has a programmatic principles in the concept of studying the Radon transform according to the computational (numerical) diameter and applying the theory of uniform distribution. The principal result is that the Radon transforms are qualified as optimal among the all possible linear functionals that are used to extract numerical information for generating a computational aggregate.

Keywords: Radon transform, computational (numerical) diameter, quasi-Monte Carlo method, recoveryof functions, limiting error.

UDC: 518:517.392

Received: 25.09.2019
Revised: 25.09.2019
Accepted: 25.09.2019

DOI: 10.26907/0021-3446-2020-3-98-104


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2020, 64:3, 87–92

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024