RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2020 Number 4, Pages 16–25 (Mi ivm9558)

This article is cited in 1 paper

Integral estimates for Laguerre polynomials with exponential weight function

R. M. Gadzhimirzaev

Dagestan Federal Research Center of the Russian Academy of Sciences, 45 M. Gadjieva str., Makhachkala, 367000 Russia

Abstract: In this paper we consider the system of functions $\lambda_{1+n}(x)$ generated by the system of Laguerre function. For the functions $\lambda_{1+n}(x)$ different representations in terms of the Laguerre polynomials $L_n^\alpha(x)$ are obtained. Using these representations and asymptotic formulas for the $L_n^\alpha(x)$ polynomials, we investigated the behavior of the functions $\lambda_{1+n}(x)$ on $[0,\infty)$ as $n\rightarrow\infty$ and obtained estimates similar to those for the Laguerre functions

Keywords: Laguerre polynomials, Laguerre functions, asymptotic properties.

UDC: 517.15

Received: 05.03.2019
Revised: 17.09.2019
Accepted: 25.09.2019

DOI: 10.26907/0021-3446-2020-4-16-25


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2020, 64:4, 12–20

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024