RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2020 Number 4, Pages 64–73 (Mi ivm9562)

This article is cited in 1 paper

The approximation of functions by partial sums of the Fourier series in polynomials orthogonal on arbitrary grids

A. A. Nurmagomedov

M.M. Dzhambulatov Dagestan State Agrarian University, 180 M. Gadzhiev str., Makhachkala, 367032 Russia

Abstract: For arbitrary continuous function $f(t)$ on the segment $[-1, 1]$ we construct discrete sums by Fourier $S_{n,N}(f,t)$ on system polynomials forming an orthonormals system on any finite non-uniform set $T_N = \{t_j\}_{j=0}^{N-1}$ of $N$ points from segment $[-1, 1]$ with weight $\Delta{t_j} = t_{j+1} - t_j.$ Approximation properties of the constructing partial sums $S_{n,N}(f,t)$ order $n\leq{N-1}$ are investiga-ted. Namely a two-sided pointwise estimate is obtained for the Lebesgue function $L_{n,N}(t)$ discrete Fourier sums for $n=O(\delta_N^{-1/5}), \delta_N=\max_{0\leq{j}\leq{N-1}}\Delta{t_j}$. Coherently also is investigated the question of the convergence of $S_{n,N}(f,t)$ to $f(t).$ In particular, we obtaine the estimation deflection partial sums $S_{n,N}(f,t)$ from $f(t)$ for $n=O(\delta_N^{-1/5})$ which is depended on $n$ and position of a point $t$ on the $[-1, 1].$

Keywords: polynomial, orthogonal system, asymptotic formula, discrete Fourier sums, Lebesgue function.

UDC: 517.98

Received: 26.03.2019
Revised: 26.03.2019
Accepted: 19.06.2019

DOI: 10.26907/0021-3446-2020-4-64-73


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2020, 64:4, 54–63

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025