RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2020 Number 6, Pages 21–29 (Mi ivm9579)

This article is cited in 1 paper

On the Lyapunov type inequality

A. O. Ignatyev

Applied Mathematics and Mechanics, 74 R.Luxemburg str., Donetsk, 83114, Ukraina

Abstract: A.M. Lyapunov proved the inequality that makes it possible to estimate the distance between two consecutive zeros $ a $ and $ b $ of solutions of a linear differential equation of the second order $ x''(t) + q (t) x (t) = 0$ where $ q (t) $ is a continuous function for $ t \in [a, b] $. In the present note, a similar problem is solved for a linear differential equation of the form $ x'' (t) + p (t) x'(t) + q (t) x (t) = 0 $. The obtained inequality is applied to the periods estimate of periodic solutions of nonlinear differential Liénard and Van der Pol equations.

Keywords: Lyapunov–type inequality, Liénard equation, van der Pol equation.

UDC: 517.925

Received: 20.06.2019
Revised: 20.06.2019
Accepted: 25.09.2019

DOI: 10.26907/0021-3446-2020-6-21-29


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2020, 64:6, 16–23

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024