RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2020 Number 7, Pages 45–55 (Mi ivm9593)

This article is cited in 1 paper

Diophantine equation generated by the maximal subfield of a circular field

I. G. Galyautdinova, E. E. Lavrentyevab

a Kazan, Russia
b Kazan Federal University, 18 Kremlyovskaya str., Kazan, 420008 Russia

Abstract: Using the fundamental basis of the field $L_9=\mathbb{Q} (2\cos(\pi/9))$, the form $N_{L_9}(\gamma)=f(x, y, z)$ is found and the Diophantine equation $f(x,y,z)=a$ is solved. A similar scheme is used to construct the form $N_{L_7}(\gamma)=g(x,y,z)$. The Diophantine equation $g (x, y, z)=a$ is solved.

Keywords: algebraic integer number, fundamental basis of an algebraic number field, norm of algebraic number, basic units of an algebraic field, diophantine equation.

UDC: 511.61

Received: 04.06.2019
Revised: 04.03.2020
Accepted: 25.03.2020

DOI: 10.26907/0021-3446-2020-7-45-55


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2020, 64:7, 38–47

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025