RUS
ENG
Full version
JOURNALS
// Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
// Archive
Izv. Vyssh. Uchebn. Zaved. Mat.,
2020
Number 8,
Pages
36–43
(Mi ivm9601)
This article is cited in
4
papers
A criterion for the
$\sigma$
-subnormality of a subgroup in a finite
$3'$
-group
S. F. Kamornikov
a
,
V. N. Tyutyanov
b
a
Francisk Skorina Gomel State University, 104 Sovetskaya str., Gomel, 246019 Republic of Belarus
b
Gomel Branch of the International University
, 46 а October Ave., Gomel, 246029 Republic of Belarus
Abstract:
For a partition
$\sigma$
of the set
$\mathbb{P}$
of all primes, it is solved, that if a subgroup
$H$
of a finite
$3'$
-group
$G$
is
$\sigma$
-subnormal in
$<H,H^x>$
for any
$x \in G$
, then
$H$
is
$\sigma$
-subnormal in
$G$
.
Keywords:
finite group,
$\sigma$
-subnormal subgroup, subnormal subgroup, Suzuki group.
UDC:
512.542
Received:
23.09.2019
Revised:
23.09.2019
Accepted:
29.06.2020
DOI:
10.26907/0021-3446-2020-8-36-43
Fulltext:
PDF file (382 kB)
References
Cited by
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2020,
64
:8,
30–36
Bibliographic databases:
©
Steklov Math. Inst. of RAS
, 2024