RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2021 Number 1, Pages 3–10 (Mi ivm9637)

The solvability of a system of nonlinear equations

V. S. Mokeychev

Kazan Federal University, 18 Kremlyovskaya str., Kazan, 420008 Russia

Abstract: It is proved: if $\phi(\tau,\xi)$ is scalar continuous real function of arguments $\tau\in [a_{(n-1)},\ b_{(n-1)}]\subset R^{n-1},\ \xi\in [a,\ b]\subset R^{1}$ and $\phi(\tau,a) \phi(\tau,b)<0\ \forall \tau, $ then for each $\varepsilon >0$ exists a continuous $\phi_{0}(\tau,\xi),$ that $|\phi(\tau,\xi)- \phi_{0}(\tau,\xi)|<\varepsilon $ and the equation $\phi_{0}(\tau,\xi)=0$ has continuously depends on $\tau$ solution. The statement is suitable to a proof of a solvability finite system nonlinearity equations, to an estimation of a number of solutions. We give illustrating examples.

Keywords: equation, smallest solution, non uniqueness of solution.

UDC: 519.6

Received: 22.03.2020
Revised: 22.03.2020
Accepted: 29.06.2020

DOI: 10.26907/0021-3446-2021-1-3-10


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2021, 65:1, 1–7

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025