RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2021 Number 1, Pages 52–63 (Mi ivm9640)

$n$-Torsion clean and almost $n$-torsion clean matrix rings

A. Cîmpeana, P. Danchevb

a “Babeş-Bolyai” University, 1 Mihail Kogălniceanu str., Cluj-Napoca, 400084 Romania
b Institute of Mathematics and Informatics, Bulgarian Academy of Sciences 8 Acad. G. Bonchev str., Sofia, 1113 Bulgaria

Abstract: We (completely) determine those natural numbers $n$ for which the full matrix ring $\mathbb{M}_n(\mathbb{F}_2)$ and the triangular matrix ring $\mathbb{T}_n(\mathbb{F}_2)$ over the two elements field $\mathbb{F}_2$ are either $n$-torsion clean or are almost $n$-torsion clean, respectively. These results somewhat address and settle a question, recently posed by Danchev-Matczuk in Contemp. Math. (2019) as well as they supply in a more precise aspect the nil-cleanness property of the full matrix $n\times n$ ring $\mathbb{M}_n(\mathbb{F}_2)$ for all naturals $n\geq 1$, established in Linear Algebra & Appl. (2013) by Breaz-Cǎlugǎreanu-Danchev-Micu and again in Linear Algebra & Appl. (2018) by Šter as well as in Indag. Math. (2019) by Shitov.

Keywords: $n$-torsion clean ring, full matrix ring, triangular matrix ring, polynomial, simple field.

UDC: 512.6

Received: 28.03.2020
Revised: 17.08.2020
Accepted: 01.10.2020

DOI: 10.26907/0021-3446-2021-1-52-63


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2021, 65:1, 47–56

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025