Abstract:
We consider the so called Hilbert boundary value problem with boundary condition in the unit disk. Its coficient is assumed to be Hölder-continuous everywhere on the unit circle excluding a finite set of points. At these points its argument has nonremovable discontinuity of logarithmic order. We obtain formulas for the general solution and describe completely the solvability picture in a class of analytic and bounded functions in unit disc. Our technique is based on the theory of entire functions of zero-order approximation and the geometric theory of functions. The results obtained are applied to the study of the solvability of a single boundary value problem for a certain class generalized analytic function.
Keywords:Riemann–Hilbert problem, maximum principle, infinite index, entire functions of zero-order approximation, generalized analytic function.