RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2021 Number 3, Pages 76–82 (Mi ivm9659)

This article is cited in 2 papers

Construction of the Riemann–Hadamard function for the three-dimensional Bianchi equation

A. N. Mironov

Elabuga Institute of Kazan Federal University, 89 Kazanskaya str., Elabuga, 423600 Russia

Abstract: For a third-order equation with a dominant partial derivative (the Bianchi equation), the statement of the Darboux problem and the definition of the Riemann–Hadamard function are given. Based on the possibility of representing the Riemann function explicitly for a class of third-order Bianchi equations equivalent in function, sufficient conditions are proposed for the coefficients of the Bianchi equation that provide construction of the Riemann–Hadamard function in terms of hypergeometric functions.

Keywords: Bianchi equation, Darboux problem, Riemann–Hadamard function, Riemann function, Laplace invariants.

UDC: 517.96

Received: 22.04.2020
Revised: 22.04.2020
Accepted: 29.06.2020

DOI: 10.26907/0021-3446-2021-3-76-82


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2021, 65:3, 68–74

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024