RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2021 Number 5, Pages 55–63 (Mi ivm9676)

Hilbert $C^*$-modules related to discrete metric spaces

V. M. Manuilov

Moscow Center for Fundamental and Applied Mathematics, Moscow State University, 1 Leninskie Gory, Moscow, 119991 Russia

Abstract: It is shown that a metric on the union of the sets $X$ and $Y$ determines a Hilbert $C^*$-module over the uniform Roe algebra of the space $X$. Several examples of such Hilbert $C^*$-modules are described in detail.

Keywords: metric space, Roe algebra, $C^*$-algebra, Hilbert $C^*$-module.

UDC: 517.98

Received: 20.03.2021
Revised: 20.03.2021
Accepted: 30.03.2021

DOI: 10.26907/0021-3446-2021-5-55-63


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2021, 65:5, 40–47

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024