RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2021 Number 5, Pages 64–77 (Mi ivm9677)

On the relative fixed point index for a class of noncompact multivalued maps

V. V. Obukhovskiiab, S. V. Kornevb, E. N. Getmanovab

a Institute of Control Sciences of Russian Academy of Sciences, 65 Profsoyuznaya str., building 1, Moscow, 117997 Russia
b Voronezh State Pedagogical University, 86 Lenin str., Voronezh, 394043 Russia

Abstract: In the paper we define a topological characteristic, the fixed point index with respect to a convex closed subset of a Banach space for a class of completely fundamentally restrictible multivalued maps which can be represented as a composition of maps with aspheric values. This class includes, in particular, maps which are condensing with respect to a monotone nonsingular measure of noncompactness. Maps of this type naturally arise while the study of nonlinear systems with impulse effects. Applications of the index to some fixed point theorems are considered.

Keywords: fixed point, fixed point index, $J^c$-map, measure of noncompactness, condensing map, fundamentally restrictible map.

UDC: 515.126

Received: 07.08.2020
Revised: 07.08.2020
Accepted: 30.03.2021

DOI: 10.26907/0021-3446-2021-5-64-77


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2021, 65:5, 48–59

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024