RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2021 Number 6, Pages 11–24 (Mi ivm9682)

This article is cited in 1 paper

Conformal mapping from the half-plane onto a circular polygon with cusps

I. A. Kolesnikov

National Research Tomsk State University, 36 Lenina Ave., Tomsk, 634050 Russia

Abstract: The paper solves the problem of constructing a conformal mapping from the upper half-plane onto a circular-arc polygon with zero angles ($2\pi$ angles). We determine preimages of the polygon vertices and accessory parameters using the generalized of P.P. Kufarev's method of finding parameters in the Christoffel-Schwartz integral. The method is based on the chordal Loewner equation. The problem of finding the parameters of the mapping onto a polygon with angles other than zero and $2\pi$ was investigated earlier by B.G. Baybarin and the author by P.P. Kufarev's method. We give an example of finding the mapping from a half-plane onto a quadrilateral with zero angles.

Keywords: conformal mapping, circular-arc polygon, Schwarz equation, Loewner equation, Kufarev's method.

UDC: 517.542

Received: 19.03.2020
Revised: 07.12.2020
Accepted: 30.03.2021

DOI: 10.26907/0021-3446-2021-6-11-24


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2021, 65:6, 8–20


© Steklov Math. Inst. of RAS, 2024