RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2021 Number 6, Pages 35–42 (Mi ivm9684)

$k$-good formal matrix rings of infinite order

P. A. Krylov, Ts. D. Norbosambuev

Tomsk State University, 36 Lenin Ave., Tomsk, 634050 Russia

Abstract: Let $k$ be an integer that is greater than or equal to $2$. The ring $R$ is said to be $k$-good if every element of $R$ is the sum of $k$ invertible elements of $R$. We have showed that the ring of formal row-finite matrices will be $k$-good if all rings from its main diagonal are $k$-good. Also some applications of this result are given, particularly to the problem of $k$-goodness of the ring of endomorphisms of decomposable module or Abelian group.

Keywords: $k$-good element, $k$-good ring, ring of formal matrices of infinite order.

UDC: 512.552

Received: 08.06.2020
Revised: 06.12.2020
Accepted: 30.03.2021

DOI: 10.26907/0021-3446-2021-6-35-42


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2021, 65:6, 29–35


© Steklov Math. Inst. of RAS, 2024