RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2021 Number 6, Pages 95–101 (Mi ivm9689)

This article is cited in 2 papers

Brief communications

Strong solutions of one model of dynamics of thermoviscoelasticity of a continuous medium with memory

V. G. Zvyagin, V. P. Orlov

Voronezh State University, 1 Universitetskaya pl., Voronezh, 394018 Russia

Abstract: A system of equations of dynamics of a thermoviscoelastic continuous medium with an Oldroyd-type rheological relation, which is a generalization of the Navier-Stokes-Fourier system, is considered. In the planar case the existence and uniqueness of strong solutions are established. The proof is based on the construction the Galerkin approximations and their strong estimates which provide the corresponding limit passage.

Keywords: Navier-Stokes-Fourier equation, Oldroid model, strong solution, thermoviscoelastic continuous medium, apriori estimates.

UDC: 517.958

Received: 22.02.2021
Revised: 22.02.2021
Accepted: 30.03.2021

DOI: 10.26907/0021-3446-2021-6-95-101


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2021, 65:6, 84–89


© Steklov Math. Inst. of RAS, 2025