RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2021 Number 8, Pages 16–26 (Mi ivm9699)

This article is cited in 7 papers

Differences and commutators of idempotents in $C^*$-algebras

A. M. Bikchentaev, Kh. Fawwaz

Kazan Federal University, 18 Kremlyovskaya str., Kazan, 420008 Russia

Abstract: We establish similarity between some tripotents and idempotents on a Hilbert space $\mathcal{H}$ and obtain new results on differences and commutators of idempotents $ P $ and $ Q $. In the unital case, the difference $ P-Q $ is associated with the difference $A_{P, Q}$ of another pair of idempotents. Let $\varphi $ be a trace on a unital $C^*$-algebra $\mathcal{A}$, $\mathfrak{M}_{\varphi} $ be the ideal of definition of the trace $\varphi $. If $ P-Q \in \mathfrak{M}_\varphi $, then $ A_{P, Q} \in \mathfrak {M}_\varphi $ and $ \varphi (A_{P, Q}) = \varphi (P-Q) \in \mathbb{R}$. In some cases, this allowed us to establish the equality $ \varphi (P-Q) = 0$. We obtain new identities for pairs of idempotents and for pairs of isoclinic projections. It is proved that each operator $ A \in \mathcal{B} (\mathcal{H}) $, $ \dim \mathcal{H} = \infty $, can be presented as a sum of no more than 50 commutators of idempotents from $ \mathcal{B} (\mathcal{H}) $. It is shown that the commutator of an idempotent and an arbitrary element from an algebra $ \mathcal{A} $ cannot be a nonzero idempotent. If $ \mathcal{H} $ is separable and $ \dim \mathcal{H} = \infty $, then each skew-Hermitian operator $ T \in \mathcal {B} (\mathcal{H}) $ can be represented as a sum $ T = \sum_{k = 1}^4 [A_k, B_k] $, where $ A_k, B_k \in \mathcal{B} (\mathcal {H}) $ are skew-Hermitian.

Keywords: Hilbert space, linear operator, idempotent, tripotent, isoclinic projections, commutator, similarity, $C^*$-algebra, trace, determinant.

UDC: 517.98

Received: 04.09.2020
Revised: 04.09.2020
Accepted: 24.12.2020

DOI: 10.26907/0021-3446-2021-8-16-26


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2021, 65:8, 13–22


© Steklov Math. Inst. of RAS, 2025