RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2021 Number 9, Pages 40–48 (Mi ivm9712)

Generalized Lie-type derivations of alternative algebras

B. L. M. Ferreiraa, G. C. De Moraesb

a Federal University of Technology, 800 Prof. Laura Pacheco Bastos Ave., Guarapuava, 85053-510 Brazil
b Federal University of ABC, 5001 dos Estados Ave., Santo André, 09210-580 Brazil

Abstract: In this paper, we intend to describe generalized Lie-type derivations using, among other things, a generalization for alternative algebras of the following result: "If $F:A\to A$ is a generalized Lie $n$-derivation associated with a Lie $n$-derivation $D$, then a linear map $H=F-D$ satisfies $H(p_n(x_1,x_2,\ldots ,x_n)) =p_n(H(x_1),x_2,\ldots ,x_n)$ for all $x_1,x_2,\ldots ,x_n\in A$". Thus, if $A$ is a unital alternative algebra with a nontrivial idempotent $e_1$ satisfying certain conditions, then a generalized Lie-type derivation $F : A \rightarrow A$ is of the form $F(x) = \lambda x + \Xi(x)$ for all $x \in A$ , where $\lambda \in Z(A)$ and $\Xi : A \rightarrow A$ is a Lie-type derivation.

Keywords: alternative algebra, generalized Lie derivation.

UDC: 517

Received: 16.09.2020
Revised: 16.11.2020
Accepted: 24.12.2020

DOI: 10.26907/0021-3446-2021-9-40-48


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2021, 65:9, 33–40


© Steklov Math. Inst. of RAS, 2025