RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2021 Number 11, Pages 86–91 (Mi ivm9731)

Brief communications

A generalization of the Polia–Szego and Makai inequalities for torsional rigidity

L. I. Gafiyatullina, R. G. Salakhudinov

Kazan Federal University, 18 Kremlyovskaya str., Kazan, 420008 Russia

Abstract: We prove generalizations of the classical inequalities of Polia — Szegо and Makai about torsional rigidity of convex domains. The main idea of the proof is to apply an exact isoperimetric inequality of for Euclidean moments of a domain. This inequality has a wide class of extremal regions and is of independent interest.

Keywords: torsional rigidity, Euclidean moments of the domain with respect to its boundary, isoperimetric inequalities, convex domains, distance to the boundary of domain.

UDC: 514.763

Received: 15.07.2021
Revised: 15.07.2021
Accepted: 29.09.2021

DOI: 10.26907/0021-3446-2021-11-86-91


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2021, 65:11, 76–80


© Steklov Math. Inst. of RAS, 2024