RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2021 Number 12, Pages 56–66 (Mi ivm9736)

This article is cited in 3 papers

Sobolev orthogonal systems with two discrete points and Fourier series

M. G. Magomed-Kasumovab

a Daghestan Federal Research Centre of the Russian Academy of Sciences, 45 M. Gadjiev str., Makhachkala, 367000 Russia
b Southern Mathematical Institute of the Vladikavkaz Scientific Center of Russian Academy of Sciences, 53 Vatutin str., Vladikavkaz, 362027 Russia

Abstract: We consider properties of systems $\Phi_1$ orthogonal with respect to a discrete-continuous Sobolev inner product of the form $\langle f,g \rangle_S = f(a)g(a)+f(b)g(b)+\int_a^b f'(t)g'(t)dt$. In particular, we study completeness of the $\Phi_1$ systems in the Sobolev space $W^1_{L^2}$. Additionally, we analyze properties of the Fourier series with respect to $\Phi_1$ systems and prove that these series converge uniformly to functions from $W^1_{L^2}$.

Keywords: discrete-continuous inner product, Sobolev inner product, Fabe–Schauder system, Jacobi polynomials with negative parameters, Fourier series, uniform convergence, coincidence at the ends of the segment, completeness of Sobolev systems.

UDC: 517.538

Received: 06.02.2021
Revised: 06.02.2021
Accepted: 29.06.2021

DOI: 10.26907/0021-3446-2021-12-56-66


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2021, 65:12, 47–55


© Steklov Math. Inst. of RAS, 2025