RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2022 Number 6, Pages 3–12 (Mi ivm9779)

Relative demicompactness properties for exponentially founded $C$-semigroups

H. Benkhaled, A. Elleuch, A. Jeribi

Department of Mathematics, Faculty of Sciences of Sfax, University of Sfax, Road Soukra km 3.5, B.P. 1171, 3000, Sfax, Tunisia

Abstract: Let $C$ be an invertible bounded linear operator on a Banach space $X$. In this paper, we use the concept of relative demicompactness in order to investigate some properties for an exponentially bounded $C$-semigroup $(T(t))_{t\geq0}$. More precisely, we prove that the relative demicompactness of $T(t)$ for some positive values of $t$ is equivalent to the relative demicompactness of $C-A$ where $A$ is the infinitesimal generator of $(T(t))_{t\geq0}$. In addition, we study the relative demicompactness of the resolvent. Finally, we present some conditions on exponentially bounded $C$-semigroups in Hilbert space guaranteeing the relative demicompactness of $AC$.

Keywords: C-semigroup, relative demicompact linear operator, Hilbert space.

UDC: 517

Received: 03.08.2021
Revised: 03.08.2021
Accepted: 29.09.2021

DOI: 10.26907/0021-3446-2022-6-3-12


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2022, 66:6, 1–7


© Steklov Math. Inst. of RAS, 2024