RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2022 Number 6, Pages 13–25 (Mi ivm9780)

This article is cited in 1 paper

Realization functionals and description of a modulus of smoothness in variable exponent Lebesgue spaces

S. S. Volosivets

Saratov state University, 83 Astrakhanskaya str., Saratov, 410012 Russia

Abstract: In variable exponent Lebesgue spaces the equivalence between generalized modulus of smoothness defined with help of one-sided Steklov means and realization functionals using Riesz-Zygmund and Euler means is established. The description of a class of functions which are equivalent to a generalized modulus of smoothness of order $r\in\mathbb N$ is given.

Keywords: variable exponent Lebesgue space, generalized modulus of smoothness, $K$-functional, realization functional.

UDC: 517.518

Received: 20.08.2021
Revised: 20.08.2021
Accepted: 08.04.2022

DOI: 10.26907/0021-3446-2022-6-13-25


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2022, 66:6, 8–19


© Steklov Math. Inst. of RAS, 2025