RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2022 Number 10, Pages 3–10 (Mi ivm9815)

On finitely based $\mathrm{T}$-spaces of free Lie nilpotent algebras of rank $2$

V. I. Glizburga, S. V. Pchelintsevba

a Moscow City Pedagogical University, 4 Vtoroy Selskohoziajstvenny passage, Moscow, 129226 Russia
b Financial University under the Government of the Russian Federation, 49 Leningradsky Ave., Moscow, 125993 Russia

Abstract: It is proved that in free Lie nilpotent n-class algebra $F_2^{(n)}$ of rank $2$ over the field of characteristic $p \ge n\ge 4$ there exists a finite decreasing series of $\rm T$-ideals $T_0 \supseteq T_1\supseteq \dots T_k\supseteq T_{k+1}=0$, such as the $T_0=T^{(3)}$ – $\rm T$-idel, generated by the commutator $[x_1,x_2,x_3]$, and factors $T_i/T_{i+1}$ do not contain the proper $\rm T$-spaces. This implies that every $\rm T$-space of the algebra $F_2^{(n)}$ which contained in the $\rm T$-ideal $ T ^ {(3)} $ has a finite system of generators.
This result is an answer to the question of A.V. Grishin, formulated in the work A.V. Grishin, On $\rm T$-spaces in a relatively free two-generated Lie nilpotent associative algebra of index 4, J. Math. Sci. 191:5 (2013), 686–690.

Keywords: Lie nilpotent algebras of rank $2$, $\rm T$-ideal, $\rm T$-space, finite basisability.

UDC: 512.554

Received: 29.09.2021
Revised: 31.08.2022
Accepted: 28.09.2022

DOI: 10.26907/0021-3446-2022-10-3-10


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2022, 66:10, 1–7


© Steklov Math. Inst. of RAS, 2025