RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2022 Number 11, Pages 110–123 (Mi ivm9831)

On the best polynomial approximation in Hardy space

M. Sh. Shabozova, Z. Sh. Malakbozovb

a Tajik National University, 17 Rudaki Ave., Dushanbe, 734025 Republic of Tajikistan
b Institute of Tourism, Entrepreneurship and Service, 48/5 Borbad str., Dushanbe, 734055 Republic of Tajikistan

Abstract: Sharp Jackson-Stechkin-type inequalities in which the best polynomial approximation of a function in the Hardy space $H_2$ is estimated from above both in terms of the generalized modulus of continuity of the $m$-th order and in terms of the $\mathcal{K}$-functional of $r$-th derivatives are found. For some classes of functions defined with the formulated characteristics in the space $H_2$, the exact values of $n$-widths are calculated. Also in the classes $W_{2}^{(r)}(\widetilde{\omega}_{m},\Phi)$ and $W_{2}^{(r)}(\mathcal{K}_{m},\Phi)$, where $r\in\mathbb{N}$, $r\ge2$ the exact values of the best polynomial approximations of intermediate derivatives $f^{(s)}$, $1\le s\le r-1$ are obtained.

Keywords: the best polynomial approximation, generalized modulus of continuity, $\mathcal{K}$-functional, characteristic of smoothness, $n$-width.

UDC: 517.5

Received: 15.01.2022
Revised: 15.01.2022
Accepted: 29.06.2022

DOI: 10.26907/0021-3446-2022-11-110-123


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2022, 66:11, 97–109


© Steklov Math. Inst. of RAS, 2024