RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2023 Number 2, Pages 3–25 (Mi ivm9850)

This article is cited in 1 paper

Existence condition of an eigenvalue of the three particle Schrödinger operator on a lattice

Zh. I. Abdullaeva, A. M. Khalkhuzhaevb, I. A. Khujamiyorova

a Samarkand State University, 15 University blv., Samarkand, 140104 Republic of Uzbekistan
b Institute of Mathematics named after V.I.Romanovsky AS RUz, 81 Mirzo Ulugbek Ave., Tashkent, 100170 Republic of Uzbekistan

Abstract: We consider the three-particle discrete Schrödinger operator $H_{\mu,\gamma}(\mathbf{K}),$ $\mathbf{K}\in\mathbb{T}^3$ associated to a system of three particles (two particle are fermions with mass $1$ and third one is an another particle with mass $m=1/\gamma<1$ ) interacting through zero range pairwise potential $\mu>0$ on the three-dimensional lattice $\mathbb{Z}^3.$ It is proved that for $\gamma \in (1,\gamma_0)$ ($\gamma_0\approx 4,7655$) the operator $H_{\mu,\gamma}(\boldsymbol{\pi}),$ $\boldsymbol{\pi}=(\pi,\pi,\pi),$ has no eigenvalue and has only unique eigenvalue with multiplicity three for $\gamma>\gamma_0$ lying right of the essential spectrum for sufficiently large $\mu.$

Keywords: Schrödinger operator on a lattice, Hamiltonian, zero-range, fermion, eigenvalue, quasimomentum, invariant subspace, Faddeev operator.

UDC: 517.946

Received: 18.03.2022
Revised: 18.03.2022
Accepted: 28.09.2022

DOI: 10.26907/0021-3446-2023-2-3-25


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2023, 67:2, 1–22


© Steklov Math. Inst. of RAS, 2024