RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2023 Number 5, Pages 89–95 (Mi ivm9882)

This article is cited in 1 paper

Brief communications

Asymptotics of the exterior conformal modulus of a quadrilateral under stretching map

S. R. Nasyrov, V. G. Nguyen

Kazan Federal University, 18 Kremlyovskaya str., Kazan, 420008 Russia

Abstract: In this paper, we focus on studying the distortion of the exterior conformal modulus of a quadrilateral of sufficiently arbitrary form under the stretching map along the abscissa axis with coefficient $H\to\infty$. By using the properties of quasiconformal transformations and taking into account some facts from the theory of elliptic integrals, we confirm that the asymptotic behavior of this modulus does not depend on the shape of the boundary of the quadrilateral. Especially, it is equivalent to $(1/\pi)\log H$ as $H\to\infty$. Therefore, we give a solution to the Vuorinen problem for the exterior modulus of a sufficiently arbitrary quadrilateral.

Keywords: quadrilateral, conformal modulus, exterior conformal modulus, quasiconformal mapping, convergence of domains to a kernel.

UDC: 517.54

Received: 13.03.2023
Revised: 13.03.2023
Accepted: 29.03.2023

DOI: 10.26907/0021-3446-2023-5-89-95



© Steklov Math. Inst. of RAS, 2024