RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2023 Number 7, Pages 52–65 (Mi ivm9898)

Fundamental solution of a singular Bessel differential operator with a negative parameter

L. N. Lyakhovabc, Yu. N. Bulatovb, S. A. Roshchupkinb, E. L. Saninaa

a Voronezh State University, 1 University Squ., Voronezh, 394018 Russia
b Bunin Yelets State University, 28.1 Kommunarov str., Yelets, 399770 Russia
c Lipetsk State Pedagogical University named after P.P. Semenov-Tyan-Shansky, 42 Lenina str., Lipetsk, 398020 Russia

Abstract: The singular differential Bessel operator $B_{-\gamma}$ with negative parameter $-\gamma<0$ is considered. Solutions of the singular differential Bessel equation $B_{-\gamma} u+\lambda^2u=0$ are represented by linearly independent functions $\mathbb{J}_\mu$ and $\mathbb{J}_{-\mu},~{\mu}=\dfrac{\gamma+1}{2}$. Studied some properties of the functions $\mathbb{J}_\mu$, which are expressed in terms of the properties of the Bessel–Levitan j-function. Direct and inverse Bessel $\mathbb J_\mu$-transforms are introduced. Based on the $\mathbb T$-pseudo-shift operator introduced earlier, a a generalized $\mathbb T$-shift operator belonging to the Levitan class of generalized shifts, commuting with the Bessel operator $B_{-\gamma}$. A fundamental solution is found for the singular differential operator $B_{-\gamma}$ with a singularity at an arbitrary point on the semiaxis $[0,\infty).$

Keywords: spherical symmetry, singular Bessel differential operator, Bessel transforms, generalized Levitan shift, fundamental solution.

UDC: 517.9

Received: 01.06.2022
Revised: 26.12.2022
Accepted: 29.05.2023

DOI: 10.26907/0021-3446-2023-7-52-65



© Steklov Math. Inst. of RAS, 2024