RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2023 Number 12, Pages 59–70 (Mi ivm9926)

On the problem of optimal interpolation of functions

Kh. M. Shadimetovab, N. H. Mamatovacb

a Tashkent State Transport University, 1 Odilkhodjaev str., Tashkent, 100167 Republic of Uzbekistan
b V.I. Romanovskiy Institute of Mathematics, Uzbekistan Academy of Sciences, 9 University str., Tashkent, 100174 Republic of Uzbekistan
c Bukhara State University, 11 Muhammad Ikbol str., Bukhara 200118 Republic of Uzbekistan

Abstract: In this work, the problem of constructing optimal interpolation formulas is discussed. Here, first, an exact upper bound for the error of the interpolation formula in the Sobolev space is calculated. The existence and uniqueness of the optimal interpolation formula, which gives the smallest error, are proved. An algorithm for finding the coefficients of the optimal interpolation formula is given. By implementing this algorithm, the optimal coefficients are found.

Keywords: Sobolev space, extremal function, composite lattice optimal cubature formulas, error functional.

UDC: 519.644

Received: 29.03.2023
Revised: 29.03.2023
Accepted: 29.05.2023

DOI: 10.26907/0021-3446-2023-12-59-70



© Steklov Math. Inst. of RAS, 2024