RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2023 Number 9, Pages 3–19 (Mi ivm9930)

This article is cited in 10 papers

Existence condition of an eigenvalue of the three particle Schrödinger operator on a lattice

J. I. Abdullaeva, A. M. Khalkhuzhaevb, T. H. Rasulovc

a Samarkand State University, 15 University blv., Samarkand, 140104 Republic of Uzbekistan
b V.I.Romanovskiy Institute of Mathematics of the Academy of Sciences of the Republic of Uzbekistan, 15 University blv., Samarkand, 140104 Republic of Uzbekistan
c Bukhara State University, 11 M. Ikbol str., Bukhara, 200100 Republic of Uzbekistan

Abstract: We consider the three-particle discrete Schrödinger operator $H_{\mu,\gamma}(\mathbf{K}),$ $\mathbf{K}\in\mathbb{T}^3$ associated to a system of three particles (two particle are fermions with mass $1$ and third one is an another particle with mass $m=1/\gamma<1$ ) interacting through zero range pairwise potential $\mu>0$ on the three-dimensional lattice $\mathbb{Z}^3.$ It is proved that for $\gamma \in (1,\gamma_0)$ ($\gamma_0\approx 4,7655$) the operator $H_{\mu,\gamma}(\boldsymbol{\pi}),$ $\boldsymbol{\pi}=(\pi,\pi,\pi),$ has no eigenvalue and has only unique eigenvalue with multiplicity three for $\gamma>\gamma_0$ lying right of the essential spectrum for sufficiently large $\mu.$

Keywords: Schrödinger operator on a lattice, Hamiltonian, zero-range, fermion, eigenvalue, quasimomentum, invariant subspace, Faddeev operator.

UDC: 517.946

Received: 29.03.2023
Revised: 07.05.2023
Accepted: 29.05.2023

DOI: 10.26907/0021-3446-2023-9-3-19


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2023, 67:9, 1–15


© Steklov Math. Inst. of RAS, 2025