RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2023 Number 9, Pages 3–19 (Mi ivm9930)

This article is cited in 4 papers

Existence condition of an eigenvalue of the three particle Schrödinger operator on a lattice

J. I. Abdullaeva, A. M. Khalkhuzhaevb, T. H. Rasulovc

a Samarkand State University, 15 University blv., Samarkand, 140104 Republic of Uzbekistan
b V.I.Romanovskiy Institute of Mathematics of the Academy of Sciences of the Republic of Uzbekistan, 15 University blv., Samarkand, 140104 Republic of Uzbekistan
c Bukhara State University, 11 M. Ikbol str., Bukhara, 200100 Republic of Uzbekistan

Abstract: We consider the three-particle discrete Schrödinger operator $H_{\mu,\gamma}(\mathbf{K}),$ $\mathbf{K}\in\mathbb{T}^3$ associated to a system of three particles (two particle are fermions with mass $1$ and third one is an another particle with mass $m=1/\gamma<1$ ) interacting through zero range pairwise potential $\mu>0$ on the three-dimensional lattice $\mathbb{Z}^3.$ It is proved that for $\gamma \in (1,\gamma_0)$ ($\gamma_0\approx 4,7655$) the operator $H_{\mu,\gamma}(\boldsymbol{\pi}),$ $\boldsymbol{\pi}=(\pi,\pi,\pi),$ has no eigenvalue and has only unique eigenvalue with multiplicity three for $\gamma>\gamma_0$ lying right of the essential spectrum for sufficiently large $\mu.$

Keywords: Schrödinger operator on a lattice, Hamiltonian, zero-range, fermion, eigenvalue, quasimomentum, invariant subspace, Faddeev operator.

UDC: 517.946

Received: 29.03.2023
Revised: 07.05.2023
Accepted: 29.05.2023

DOI: 10.26907/0021-3446-2023-9-3-19



© Steklov Math. Inst. of RAS, 2025