Abstract:
The paper investigates sufficient conditions for the absolute convergence of trigonometric Fourier series of almost-periodic functions in the sense of Besikovitch in the case when the Fourier exponents have a single limiting point at infinity. A higher-order modulus of continuity is used as a structural characteristic of the function under consideration.
Keywords:almost-periodic Besikovitch function, Fourier series, function spectrum, Fourier coefficients, modulus of continuity, trigonometric polynomial.