RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2024 Number 4, Pages 67–79 (Mi ivm9973)

On the absolute convergence of Fourier series of almost periodic functions

Yu. Kh. Khasanova, F. M. Talbakovb

a Russian-Tajik Slavonic University, 30 M. Tursunzoda str., Dushanbe, 734025 Republic of Tajikistan
b Tajik State Pedagogical University named after S. Aenya, 121 Rudaki str., Dushanbe, 734003 Republic of Tajikistan

Abstract: The paper investigates sufficient conditions for the absolute convergence of trigonometric Fourier series of almost-periodic functions in the sense of Besikovitch in the case when the Fourier exponents have a single limiting point at infinity. A higher-order modulus of continuity is used as a structural characteristic of the function under consideration.

Keywords: almost-periodic Besikovitch function, Fourier series, function spectrum, Fourier coefficients, modulus of continuity, trigonometric polynomial.

UDC: 517.518

Received: 10.03.2023
Revised: 11.09.2023
Accepted: 26.09.2023

DOI: 10.26907/0021-3446-2024-4-67-79



© Steklov Math. Inst. of RAS, 2024