RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2024 Number 5, Pages 63–78 (Mi ivm9981)

Integration of the Korteweg-de Vries equation with time-dependent coefficients in the case of moving eigenvalues of the Sturm–Liouville operator

U.A. Hoitmetov, T. G. Hasanov

Urgench State University, 14 H. Alimdjan str., Urgench, 220100 Republic of Uzbekistan

Abstract: The inverse scattering method is used to integrate the Korteweg-de Vries equation with time-dependent coefficients. We derive the evolution of the scattering data of the Sturm–Liouville operator whose coefficient is a solution of the Korteweg-de Vries equation with time-dependent coefficients. An algorithm for constructing exact solutions of the Korteweg-de Vries equation with time-dependent coefficients is also proposed; we reduce it to the inverse problem of scattering theory for the Sturm–Liouville operator. Examples illustrating the stated algorithm are given.

Keywords: inverse scattering method, Korteweg-de Vries equations, Sturm–Liouville operator.

UDC: 517.957

Received: 12.12.2022
Revised: 30.09.2023
Accepted: 20.03.2024

DOI: 10.26907/0021-3446-2024-5-63-78



© Steklov Math. Inst. of RAS, 2024