RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2024 Number 6, Pages 3–14 (Mi ivm9985)

Inequalities for the differences of averages on $H^1$ spaces

S. Demir

Agri Ibrahim Cecen University, Ağrı, 04100 Turkey

Abstract: Let $(x_n)$ be a sequence and $\{c_k\}\in \ell^\infty (\mathbb{Z})$ such that $\|c_k\|_{\ell^\infty}\leq 1$. Define
$$\mathcal{G}(x_n)=\sup_j\left|\sum_{k=0}^j c_k(x_{n_{k+1}}-x_{n_k})\right|.$$
Let now $(X,\beta ,\mu ,\tau )$ be an ergodic, measure preserving dynamical system with $(X,\beta ,\mu )$ a totally $\sigma$-finite measure space. Suppose that the sequence $(n_k)$ is lacunary. Then we prove the following results:
(i) Define $\phi_n(x)=\dfrac{1}{n}\chi_{[0,n]}(x)$ on $\mathbb{R}$. Then there exists a constant $C>0$ such that
$$\|\mathcal{G}(\phi_n\ast f)\|_{L^1(\mathbb{R})}\leq C\|f\|_{H^1(\mathbb{R})}$$
for all $f\in H^1(\mathbb{R})$,
(ii) Let
$$A_nf(x)=\frac{1}{n}\sum_{k=0}^{n-1}f(\tau^kx)$$
be the usual ergodic averages in ergodic theory. Then
$$\|\mathcal{G}(A_nf)\|_{L^1(X)}\leq C\|f\|_{H^1(X)}$$
for all $f\in H^1(X)$,
(iii) If $[f(x)\log (x)]^+$ is integrable, then $\mathcal{G}(A_nf)$ is integrable.

Keywords: difference sequence, ergodic Hardy space, ergodic Average, lacunary sequence.

UDC: 517

Received: 11.04.2023
Revised: 11.04.2023
Accepted: 29.05.2023

DOI: 10.26907/0021-3446-2024-6-3-14



© Steklov Math. Inst. of RAS, 2024