Abstract:
The model of a one-dimensional active medium, which cell represents FitzHugh–Nagumo oscillator, is studied with periodical boundary conditions. Such medium can be either self-oscillatory or excitable one in dependence of the parameters values. Periodical boundary conditions provide the existence of traveling wave regimes both in excitable and self-oscillatory case without any deterministic or stochastic impacts. The local periodic force influence on the medium is under study. In addition to the uniform medium study the single FitzHugh–Nagumo oscillator with complementary time-delayed feedback is considered. The comparison of synchronization effects in excitable and self-oscillatory regimes of the active medium and its analogue is carried out.