RUS  ENG
Full version
JOURNALS // University proceedings. Volga region. Physical and mathematical sciences // Archive

University proceedings. Volga region. Physical and mathematical sciences, 2013 Issue 1, Pages 61–81 (Mi ivpnz431)

This article is cited in 2 papers

Mathematics

Diameters of Sobolev class functions with boundary peculiarities

I. V. Boykov, A. N. Tynda

Penza State University, Penza

Abstract: The article estimates the diameters of Kolmogorov and Babenko class functions which have the solutions of Volterra integral functions with singular kernels. A distinctive feature of these classes is an unlimited growth of function derivative modules when approaching a definitial domain boundary. For these function classes the authors have built local splines being optimal order algorithms of approximation.

Keywords: Sobolev space, optimal algorithms, Babenko and Kolmogorov diameters, local splines.

UDC: 518.5



© Steklov Math. Inst. of RAS, 2024