RUS  ENG
Full version
JOURNALS // News of the Kabardino-Balkarian Scientific Center of the Russian Academy of Sciences // Archive

News of the Kabardino-Balkarian Scientific Center of the Russian Academy of Sciences, 2024 Volume 26, Issue 1, Pages 69–77 (Mi izkab757)

This article is cited in 1 paper

Mathematics and Mechanics

Boundary value problem for loaded parabolic equations of fractional order

M. M. Karmokov, F. M. Nakhusheva, M. H. Abregov

Kabardino-Balkarian State University named after Kh.M. Berbekov, 360004, Russia, Nalchik, 173 Chernyshevsky street

Abstract: The article considers the second boundary value problem for a loaded parabolic equation with a fractional Riemann – Liouville integro-differentiation operator. The unambiguous solvability of the second boundary value problem is proved. Using the Green function method with the theory of the potential of a simple layer, the problem is reduced to a system of Volterra integral equations of the second kind.

Keywords: boundary value problems, parabolic equations, fractional integro-differentiation operator, loaded equation, regular solution

UDC: 517.95

MSC: 35К20

Received: 01.02.2024
Revised: 09.02.2024
Accepted: 12.02.2024

DOI: 10.35330/1991-6639-2024-26-1-69-77



© Steklov Math. Inst. of RAS, 2025