Abstract:
A new mechanism is proposed for the energy relaxation of hot carriers in single-wall carbon nanotubes: scattering with the emission of surface optical phonons into the semiconductor substrate. The theory involves intrasubband and intersubband forward and backward scattering. The analytical result and numerical data indicate that intrasubband forward scattering is the main process: the corresponding lifetime comprises several femtoseconds for a quartz substrate, which allows this mechanism of energy relaxation to be considered dominating for a nanotube on the surface of a polar semiconductor or a dielectric.