RUS  ENG
Full version
JOURNALS // Pis'ma v Zhurnal Èksperimental'noi i Teoreticheskoi Fiziki // Archive

Pis'ma v Zh. Èksper. Teoret. Fiz., 2006 Volume 84, Issue 12, Pages 769–774 (Mi jetpl1210)

This article is cited in 10 papers

CONDENSED MATTER

Electronic theory for itinerant in-plane magnetic fluctuations in $\mathrm{Na_xCoO_2}$

M. M. Korshunovab, I. M. Ereminac, A. O. Shorikovd, V. I. Anisimovd

a L. V. Kirensky Institute of Physics, Siberian Branch of the Russian Academy of Sciences
b Max-Planck-Institut für Physik komplexer Systeme, D-01187 Dresden, Germany
c Institut für Mathematische Physik and Theoretische Physik, TU Braunschweig, 38106 Braunschweig, Germany
d Institute of Metal Physics, RAS-Ural Division

Abstract: Starting from ab-initio band structure for $\mathrm{Na_xCoO_2}$, we derive the single-electron energies and the effective tight-binding description for the $t_{2g}$ bands using a projection procedure. We find that due to the presence of the next-nearest-neighbor hoppings a local minimum in the electronic dispersion close to the $\Gamma$ point of the first Brillouin zone forms. Therefore, in addition to a large Fermi surface an electron pocket close to the $\Gamma$ point emerges at high doping concentrations. The latter yields the new scattering channel resulting in a peak structure of the itinerant magnetic susceptibility at small momenta. This indicates itinerant in-plane ferromagnetic state above certain critical concentration $x_m$, in agreement with neutron scattering data. Below $x_m$ the magnetic susceptibility shows a tendency towards the antiferromagnetic fluctuations. We estimate the value of $0.56<x_m<0.68$ within the rigid band model and within the Hubbard model with infinite on-site Coulomb repulsion consistent with the experimental phase diagram.

PACS: 31.15.Ar, 71.10.-w, 74.70.-b, 75.40.Cx

Received: 30.10.2006

Language: English


 English version:
Journal of Experimental and Theoretical Physics Letters, 2006, 84:12, 650–655

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024