RUS  ENG
Full version
JOURNALS // Pis'ma v Zhurnal Èksperimental'noi i Teoreticheskoi Fiziki // Archive

Pis'ma v Zh. Èksper. Teoret. Fiz., 2006 Volume 83, Issue 5, Pages 241–245 (Mi jetpl1257)

This article is cited in 5 papers

NONLINEAR DYNAMICS

Bifurcations and stability of internal solitary waves

D. S. Agafontseva, F. Diasb, E. A. Kuznetsova

a L. D. Landau Institute for Theoretical Physics
b Centre de Mathématiques et de Leurs Applications, École normale supérieure de Cachan, 94235 Cachan cedex, France

Abstract: We study both supercritical and subcritical bifurcations of internal solitary waves propagating along the interface between two deep ideal fluids. We derive a generalized nonlinear Schrödinger equation to describe solitons near the critical density ratio corresponding to transition from subcritical to supercritical bifurcation. This equation takes into account gradient terms for the four-wave interactions (the so-called Lifshitz term and a nonlocal term analogous to that first found by Dysthe for pure gravity waves) as well as the six-wave nonlinear interaction term. Within this model we find two branches of solitons and analyze their Lyapunov stability.
Выполняется проверка баланса скобок...

PACS: 05.45.Yv, 47.55.-t, 47.90.+a

Received: 02.02.2006

Language: English


 English version:
Journal of Experimental and Theoretical Physics Letters, 2006, 83:5, 201–205

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024