Abstract:
The tunneling transport through a GaAs/(AlGa)As/GaAs single-barrier heterostructure with self-assembled InAs quantum dots is studied experimentally at low temperatures. An anomalous increase in the tunneling current through the quantum dots is observed in magnetic fields both parallel and perpendicular to the current. This result cannot be understood in the framework of the single-electron approximation. The proposed explanation of the phenomenon is based on the modified Matveev–Larkin theory, which predicts the appearance of a singularity in the tunneling current through the zero-dimensional state in a magnetic field because of the interaction between the tunneling electron and the spin-polarized three-dimensional electron gas in the emitter. The absence of spin splitting in the experimental resonance peaks is caused by the complete spin polarization of the emitter in relatively weak magnetic fields.