RUS  ENG
Full version
JOURNALS // Pis'ma v Zhurnal Èksperimental'noi i Teoreticheskoi Fiziki // Archive

Pis'ma v Zh. Èksper. Teoret. Fiz., 2011 Volume 93, Issue 10, Pages 660–664 (Mi jetpl1910)

This article is cited in 17 papers

CONDENSED MATTER

Density of states in random lattices with translational invariance

Y. M. Beltukov, D. A. Parshin

Saint-Petersburg State Polytechnical University

Abstract: We propose a random matrix approach to describe vibrations in disordered systems. The dynamical matrix $M$ is taken in the form $M=AA^T$ where $A$ is a real random matrix. It guaranties that $M$ is a positive definite matrix. This is necessary for mechanical stability of the system. We built matrix $A$ on a simple cubic lattice with translational invariance and interaction between nearest neighbors. It was found that for a certain type of disorder acoustical phonons cannot propagate through the lattice and the density of states $g(\omega)$ is not zero at $\omega=0$. The reason is a breakdown of affine assumptions and inapplicability of the macroscopic elasticity theory. Young modulus goes to zero in the thermodynamic limit. It reminds of some properties of a granular matter at the jamming transition point. Most of the vibrations are delocalized and similar to diffusons introduced by Allen, Feldman et al., Phil. Mag. B 79, 1715 (1999). We show how one can gradually return rigidity and phonons back to the system increasing the width of the so-called phonon gap (the region where $g(\omega)\propto\omega^2$). Above the gap the reduced density of states $g(\omega)/\omega^2$ shows a well-defined Boson peak which is a typical feature of glasses. Phonons cease to exist above the Boson peak and diffusons are dominating. It is in excellent agreement with recent theoretical and experimental data.

Received: 08.04.2011

Language: English


 English version:
Journal of Experimental and Theoretical Physics Letters, 2011, 93:10, 598–602

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024