Abstract:
Analysis of the rotational spectrum of the molecular dimer (CO)2 measured in the millimeter wave range has been performed and four new rotational states are revealed. Three of these states are characterized by almost free rotations of both monomers in the dimer. These states have approximately the same first term σ in the expansion of the rotational energy in powers of the rotational angular momentum J for various values of the momentum projections on the dimer axis (K=0, 1, 2) and various rotational constants B. The intrinsic rotational angular momenta of CO dimers, j1=j2=1, are determined from the σ value. In addition, a state with K=2 is found which corresponds to one of the known shape isomers of (CO)2. The values of the tunneling splitting for each of the new states are determined. The results indicate that previous data on the suppressed tunneling are determined by the asymmetry of internal rotations in the CO monomers rather than by the K value.