RUS  ENG
Full version
JOURNALS // Pis'ma v Zhurnal Èksperimental'noi i Teoreticheskoi Fiziki // Archive

Pis'ma v Zh. Èksper. Teoret. Fiz., 2004 Volume 80, Issue 3, Pages 200–205 (Mi jetpl2074)

This article is cited in 2 papers

CONDENSED MATTER

Dynamics and spectra of excited states of water-micellar suspensions of single-walled carbon nanotubes

V. A. Nadtochenkoa, A. S. Lobatcha, F. E. Gostevb, O. M. Sarkisovb, D. O. Shcherbininb, E. D. Obraztsovac

a Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow region
b Institute of Chemical Physics, Russian Academy of Sciences
c Natural Sciences Center at General Physics Institute of RAS

Abstract: The dynamics of the photoinduced differential absorption and excited-state bleaching spectra of single-walled carbon nanotubes suspended in a micellar solution were studied in the spectral range from 40 to 1000 nm within a time interval from 70 fs to 150 ps under excitation by 50-fs pulses with photon energies 2 and 4 eV. The bleaching and absorption bands were observed in the spectra; the positions of the bleaching peaks were independent of the photon energy of the exciting femtosecond pulse in the range 2–4 eV. It was established that, for delay times shorter than 1 ps, the shape of the differential spectrum of excited nanotubes coincided with the shape of the second derivative of the absorption spectrum of unexcited nanotubes in the frequency range of exciting pulse above 18000 cm−1 (the range of absorption bands of metallic nanotubes). In the frequency range below 16000 cm−1 (the range of absorption peaks of semiconducting nanotubes), the bleaching peaks in the differential spectrum of excited nanotubes undergo a high-frequency shift of 200–300 cm−1 with respect to the second-derivative spectrum of unexcited nanotubes. The excited-state relaxation rate constants were measured. They are well approximated by the exponential dependences and depend on the probe-pulse wavelength. An assumption was made about the nature of the observed spectra of excited nanotubes and about the excitation relaxation.

PACS: 73.22.-f

Received: 03.06.2004
Revised: 22.06.2004


 English version:
Journal of Experimental and Theoretical Physics Letters, 2004, 80:3, 176–180

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024