Abstract:
The angular dependences of the magnetization and Hall resistance have been investigated by the method of the sample rotation in the magnetic field in the high-quality single-crystal samples in the paramagnetic and magnetically ordered phases of CeB6 in the magnetic field up to 60 kOe. It has been shown that, as CeB6 undergoes the transition from the antiferromagnetic modulated phase to the so-called antiferroquadrupolar phase, the easy-magnetization axis in the [110] plane changes from 〈;100〉 to 〈;110〉. The magnetic field dependences of the anisotropic component of the magnetization differ radically in these magnetically ordered phases. The analysis provides evidence in favor of the formation of a state with the spin density wave (SDW phase) in the temperature range TN ≈ 2.3 K < T < TQ ≈ 3.3 K in CeB6.