Abstract:
Temperature- and magnetic-field dependent measurements of the resistance of ultrathin superconducting TiN films are presented. The analysis of the temperature dependence of the zero field resistance indicates an underlying insulating behavior, when the contribution of Aslamasov–Larkin fluctuations is taken into account. This demonstrates the possibility of coexistence of the superconducting and insulating phases and of a direct transition from the one to the other. The scaling behavior of magnetic field data is in accordance with a superconductor–insulator transition (SIT) driven by quantum phase fluctuations in two-dimensional superconductor. The temperature dependence of the isomagnetic resistance data on the high-field side of the SIT has been analyzed and the presence of an insulating phase is confirmed. A transition from the insulating to a metallic phase is found at high magnetic fields, where the zero-temperature asymptotic value of the resistance being equal to $h/e^2$.