Abstract:
A percolation model has been proposed to explain an insulator-conductor transition in ultrananocrystalline diamond films upon addition of nitrogen to a gas mixture used to synthesize films. An observed jump of the conductivity by 10–12 orders of magnitude is a result of the rearrangement of the structure of films leading to the formation of diamond nanorods in a graphite shell. A nitriding-induced increase in the volume fraction of these nanorods (up to 0.22) has been determined from small-angle X-ray scattering data. Conduction occurs through graphite shells and the percolation threshold corresponds to the volume fraction of conducting nanorods of 0.06.